Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations
نویسندگان
چکیده
Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices.
منابع مشابه
Drift Removal for Improving the Accuracy of Gait Parameters Using Wearable Sensor Systems
Accumulated signal noise will cause the integrated values to drift from the true value when measuring orientation angles of wearable sensors. This work proposes a novel method to reduce the effect of this drift to accurately measure human gait using wearable sensors. Firstly, an infinite impulse response (IIR) digital 4th order Butterworth filter was implemented to remove the noise from the raw...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملA Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملکاربردهای شبکههای حسگر بدنی در حوزه ی سلامت: مروری بر منابع
Background and Aim: Nowadays, one of the most important areas of application of information technology in the health sector is monitoring patients' condition. Recently utilization of body area sensor networks in healthcare had significant advances. The purpose of this article is to examine the applications of wireless health sensor networks in the field of health. Materials and Methods: This ...
متن کاملPreliminary Usability Tests of the Wearable Joystick for Gloves-On Hazardous Environments
In this paper, we describe usability tests to evaluate a gestural joystick as a new input device. The usability of a device addresses five main issues: learnability, efficiency, memorability, errors, and satisfaction. These different measures of usability are used in an attempt to compare the gestural joystick, called ”wearable joystick”, with four different input devices. This paper reviews th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016